3.271 \(\int \frac {(g \sec (e+f x))^{3/2}}{(a+b \sec (e+f x)) \sqrt {c+d \sec (e+f x)}} \, dx\)

Optimal. Leaf size=83 \[ \frac {2 g \sqrt {g \sec (e+f x)} \sqrt {\frac {c \cos (e+f x)+d}{c+d}} \Pi \left (\frac {2 a}{a+b};\frac {1}{2} (e+f x)|\frac {2 c}{c+d}\right )}{f (a+b) \sqrt {c+d \sec (e+f x)}} \]

[Out]

2*g*(cos(1/2*e+1/2*f*x)^2)^(1/2)/cos(1/2*e+1/2*f*x)*EllipticPi(sin(1/2*e+1/2*f*x),2*a/(a+b),2^(1/2)*(c/(c+d))^
(1/2))*((d+c*cos(f*x+e))/(c+d))^(1/2)*(g*sec(f*x+e))^(1/2)/(a+b)/f/(c+d*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.43, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {3975, 2807, 2805} \[ \frac {2 g \sqrt {g \sec (e+f x)} \sqrt {\frac {c \cos (e+f x)+d}{c+d}} \Pi \left (\frac {2 a}{a+b};\frac {1}{2} (e+f x)|\frac {2 c}{c+d}\right )}{f (a+b) \sqrt {c+d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(g*Sec[e + f*x])^(3/2)/((a + b*Sec[e + f*x])*Sqrt[c + d*Sec[e + f*x]]),x]

[Out]

(2*g*Sqrt[(d + c*Cos[e + f*x])/(c + d)]*EllipticPi[(2*a)/(a + b), (e + f*x)/2, (2*c)/(c + d)]*Sqrt[g*Sec[e + f
*x]])/((a + b)*f*Sqrt[c + d*Sec[e + f*x]])

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3975

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))), x_Symbol] :> Dist[(g*Sqrt[g*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]],
 Int[1/(Sqrt[b + a*Sin[e + f*x]]*(d + c*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {(g \sec (e+f x))^{3/2}}{(a+b \sec (e+f x)) \sqrt {c+d \sec (e+f x)}} \, dx &=\frac {\left (g \sqrt {d+c \cos (e+f x)} \sqrt {g \sec (e+f x)}\right ) \int \frac {1}{(b+a \cos (e+f x)) \sqrt {d+c \cos (e+f x)}} \, dx}{\sqrt {c+d \sec (e+f x)}}\\ &=\frac {\left (g \sqrt {\frac {d+c \cos (e+f x)}{c+d}} \sqrt {g \sec (e+f x)}\right ) \int \frac {1}{(b+a \cos (e+f x)) \sqrt {\frac {d}{c+d}+\frac {c \cos (e+f x)}{c+d}}} \, dx}{\sqrt {c+d \sec (e+f x)}}\\ &=\frac {2 g \sqrt {\frac {d+c \cos (e+f x)}{c+d}} \Pi \left (\frac {2 a}{a+b};\frac {1}{2} (e+f x)|\frac {2 c}{c+d}\right ) \sqrt {g \sec (e+f x)}}{(a+b) f \sqrt {c+d \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 83, normalized size = 1.00 \[ \frac {2 g \sqrt {g \sec (e+f x)} \sqrt {\frac {c \cos (e+f x)+d}{c+d}} \Pi \left (\frac {2 a}{a+b};\frac {1}{2} (e+f x)|\frac {2 c}{c+d}\right )}{f (a+b) \sqrt {c+d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*Sec[e + f*x])^(3/2)/((a + b*Sec[e + f*x])*Sqrt[c + d*Sec[e + f*x]]),x]

[Out]

(2*g*Sqrt[(d + c*Cos[e + f*x])/(c + d)]*EllipticPi[(2*a)/(a + b), (e + f*x)/2, (2*c)/(c + d)]*Sqrt[g*Sec[e + f
*x]])/((a + b)*f*Sqrt[c + d*Sec[e + f*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*sec(f*x+e))^(3/2)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \sec \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (b \sec \left (f x + e\right ) + a\right )} \sqrt {d \sec \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*sec(f*x+e))^(3/2)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((g*sec(f*x + e))^(3/2)/((b*sec(f*x + e) + a)*sqrt(d*sec(f*x + e) + c)), x)

________________________________________________________________________________________

maple [C]  time = 2.15, size = 236, normalized size = 2.84 \[ -\frac {2 i \left (a \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, \sqrt {-\frac {c -d}{c +d}}\right )+b \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, \sqrt {-\frac {c -d}{c +d}}\right )-2 a \EllipticPi \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, -\frac {a -b}{a +b}, i \sqrt {\frac {c -d}{c +d}}\right )\right ) \sqrt {\frac {d +c \cos \left (f x +e \right )}{\left (1+\cos \left (f x +e \right )\right ) \left (c +d \right )}}\, \left (\frac {g}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \left (\cos ^{2}\left (f x +e \right )\right ) \sqrt {\frac {d +c \cos \left (f x +e \right )}{\cos \left (f x +e \right )}}}{f \left (d +c \cos \left (f x +e \right )\right ) \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \left (a -b \right ) \left (a +b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*sec(f*x+e))^(3/2)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^(1/2),x)

[Out]

-2*I/f*(a*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),(-(c-d)/(c+d))^(1/2))+b*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e
),(-(c-d)/(c+d))^(1/2))-2*a*EllipticPi(I*(-1+cos(f*x+e))/sin(f*x+e),-(a-b)/(a+b),I*((c-d)/(c+d))^(1/2)))*((d+c
*cos(f*x+e))/(1+cos(f*x+e))/(c+d))^(1/2)*(g/cos(f*x+e))^(3/2)*cos(f*x+e)^2*((d+c*cos(f*x+e))/cos(f*x+e))^(1/2)
/(d+c*cos(f*x+e))/(1/(1+cos(f*x+e)))^(1/2)/(a-b)/(a+b)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \sec \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (b \sec \left (f x + e\right ) + a\right )} \sqrt {d \sec \left (f x + e\right ) + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*sec(f*x+e))^(3/2)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*sec(f*x + e))^(3/2)/((b*sec(f*x + e) + a)*sqrt(d*sec(f*x + e) + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {g}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{\left (a+\frac {b}{\cos \left (e+f\,x\right )}\right )\,\sqrt {c+\frac {d}{\cos \left (e+f\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g/cos(e + f*x))^(3/2)/((a + b/cos(e + f*x))*(c + d/cos(e + f*x))^(1/2)),x)

[Out]

int((g/cos(e + f*x))^(3/2)/((a + b/cos(e + f*x))*(c + d/cos(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \sec {\left (e + f x \right )}\right )^{\frac {3}{2}}}{\left (a + b \sec {\left (e + f x \right )}\right ) \sqrt {c + d \sec {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*sec(f*x+e))**(3/2)/(a+b*sec(f*x+e))/(c+d*sec(f*x+e))**(1/2),x)

[Out]

Integral((g*sec(e + f*x))**(3/2)/((a + b*sec(e + f*x))*sqrt(c + d*sec(e + f*x))), x)

________________________________________________________________________________________